

Al-based multiparametric recovery monitoring in elite ice hockey

Eggenberger, Patrick¹-²; Buffat, Nadine¹-²; Brunner, Emanuel¹; Gubler, Raphael³; Weber, Thomas³

OST – Eastern Switzerland University of Applied Sciences, Department Health, Physiotherapy, St. Gallen; ² ETH Zurich, Institute of Human Movement Sciences and Sport, Zurich;

Key words: recovery monitoring, overtraining syndrome, ice hockey, artificial intelligence, countermovement jump, heart rate variability, executive function, body temperature

SO WHAT!?

- 10–30% of youth and adult high-level

Figure 1: Recovery measurement domains/methods. Heart rate variability (HRV) measured with chest strap, countermovement jump (CMJ) on force plate, executive functions (EF) with computerized tests, core body temperature with in-ear thermometer, training load is athlete's rating of previous weeks, sleep includes quality and duration.

THE PROBLEM

Overtraining syndrome (OTS) characterized by reduced athletic performance over 3-4 weeks up to months. Concurrent symptoms include:

- mood and sleep disturbances, feelings of depression,
- increased perceptions of effort, respiratory tract infections,
- loss of appetite, unexplained weight loss, and others (2,3). Currently, no reliable measurement system exists for prevention and early diagnosis of OTS (4).

OUR AIM AND HYPOTHESIS

Develop accurate, time- and cost-efficient measurement systems for recovery monitoring in athletes. We hypothesize

that multiparametric measurements predict subjective recovery state with high accuracy (i.e., area under curve, AUC>0.8).

METHODS

25 male elite ice hockey players of SC Rapperswil-Jona Lakers participated: Swiss National League team, n = 11, age = 24.8 \pm 4.1 years; U20 Elit team, n = 14, age = 18.5 \pm 1.5 years.

- 8-10 measurement days per team over 5-10 weeks during competitive season, after 1 day of recovery or after match-/intensive training day, 170 valid measurement timepoints;
- · 40 parameters from mainly objective measurement domains (purple colour figure 1) to predict subjective score of Stress Recovery Short Scale (SRSS, 5) as reference (blue colour). Al-algorithms applied to select important predictive parameters.

KEY RESULTS

The two developed measurement systems (figure 2a/b) identify highly stressed athletes (i.e., reference SRSS score < 6) with:

very high accuracy, when using all measurement domains/methods;

b) high accuracy, when only using parameters that don't need data processing (i.e., without HRV, EF).

Figures 2a/b: Predictive accuracy of measurement systems Red circle further in upper-left corner = higher accuracy.

CONCLUSIONS

- Parameters from all measurement domains/methods are related to subjective recovery state (figure 3);
- confirms multisystemic nature of OTS;
- multiparametric measurement systems might be most reliable for accurate recovery monitoring in athletes.

Figure 3: Relative predictive importance of parameters in measurement system a (% of AUC). Number of parameters: HRV 15, EF 5, training load 1, sleep 2, CMJ 2, body temperature 1.

REFERENCES

- Exercise, 43(7), 1287–1284.

 Day, E., Pearce, A. J., Esser, P., & Ryan, L. (2022). Evaluating the relationship between neurological function, neuronuscular flatigue, and subjective performance measures professional rupply union players. Frontiers in Sports and Active Living, 4, 1068326.

 Jones, C. M., Griffiths, P. C., & Melalies, S. D. (2017). Training Load and Fatigue Marker Associations with Bullary and Biness: A Systematic Review of Longitudinal Studies. Sports Westley.

- Medicine, 47(5), 93/574.

 Medicine, 47(5), 93/574.

 Weakey, J., Habon, S. L., & Mujka, I. (2022). Overtraining Syndrome Symptoms and Diagnosis in Albitese: Where is the Research? A Systematic Review. International Journal of Sports Physiology and Performance, 11(5), 875-861.

 Kellmann, M. & Kölling, S. (2020). Das Akstmass und die Kurzskala zur Erfassung vom Erholung und Beangrouchung für Erwartsen und Kinder-Objeendiche. Bundessisch für Erholung und Beangrouchung für Erwartsen und Kinder-Objeendiche. Bundessisch für Reinlang und Beangrouchung für Erwartsen und Kinder-Objeendiche. Bundessisch für Reinlang und Beangrouchung für Erwartsen und Kinder-Objeendiche. Bundessisch für Reinlang und Beangrouchung für Erwartsen und Kinder-Objeendiche. Bundessisch für Schale (1998).

